Is Input Sparsity Time Possible for Kernel Low-Rank Approximation?

NeurIPS 2017  ·  Cameron Musco, David P. Woodruff ·

Low-rank approximation is a common tool used to accelerate kernel methods: the $n \times n$ kernel matrix $K$ is approximated via a rank-$k$ matrix $\tilde K$ which can be stored in much less space and processed more quickly. In this work we study the limits of computationally efficient low-rank kernel approximation. We show that for a broad class of kernels, including the popular Gaussian and polynomial kernels, computing a relative error $k$-rank approximation to $K$ is at least as difficult as multiplying the input data matrix $A \in \mathbb{R}^{n \times d}$ by an arbitrary matrix $C \in \mathbb{R}^{d \times k}$. Barring a breakthrough in fast matrix multiplication, when $k$ is not too large, this requires $\Omega(nnz(A)k)$ time where $nnz(A)$ is the number of non-zeros in $A$. This lower bound matches, in many parameter regimes, recent work on subquadratic time algorithms for low-rank approximation of general kernels [MM16,MW17], demonstrating that these algorithms are unlikely to be significantly improved, in particular to $O(nnz(A))$ input sparsity runtimes. At the same time there is hope: we show for the first time that $O(nnz(A))$ time approximation is possible for general radial basis function kernels (e.g., the Gaussian kernel) for the closely related problem of low-rank approximation of the kernelized dataset.

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here