Is writing style predictive of scientific fraud?

13 Jul 2017  ·  Chloé Braud, Anders Søgaard ·

The problem of detecting scientific fraud using machine learning was recently introduced, with initial, positive results from a model taking into account various general indicators. The results seem to suggest that writing style is predictive of scientific fraud. We revisit these initial experiments, and show that the leave-one-out testing procedure they used likely leads to a slight over-estimate of the predictability, but also that simple models can outperform their proposed model by some margin. We go on to explore more abstract linguistic features, such as linguistic complexity and discourse structure, only to obtain negative results. Upon analyzing our models, we do see some interesting patterns, though: Scientific fraud, for examples, contains less comparison, as well as different types of hedging and ways of presenting logical reasoning.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here