Iterative Block Tensor Singular Value Thresholding for Extraction of Low Rank Component of Image Data

15 Jan 2017Longxi ChenYipeng LiuCe Zhu

Tensor principal component analysis (TPCA) is a multi-linear extension of principal component analysis which converts a set of correlated measurements into several principal components. In this paper, we propose a new robust TPCA method to extract the princi- pal components of the multi-way data based on tensor singular value decomposition... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet