Iterative Orthogonal Feature Projection for Diagnosing Bias in Black-Box Models

15 Nov 2016  ·  Julius Adebayo, Lalana Kagal ·

Predictive models are increasingly deployed for the purpose of determining access to services such as credit, insurance, and employment. Despite potential gains in productivity and efficiency, several potential problems have yet to be addressed, particularly the potential for unintentional discrimination. We present an iterative procedure, based on orthogonal projection of input attributes, for enabling interpretability of black-box predictive models. Through our iterative procedure, one can quantify the relative dependence of a black-box model on its input attributes.The relative significance of the inputs to a predictive model can then be used to assess the fairness (or discriminatory extent) of such a model.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.