Iterative temporal differencing with fixed random feedback alignment support spike-time dependent plasticity in vanilla backpropagation for deep learning

ICLR 2018  ·  Aras Dargazany, Kunal Mankodiya ·

In vanilla backpropagation (VBP), activation function matters considerably in terms of non-linearity and differentiability. Vanishing gradient has been an important problem related to the bad choice of activation function in deep learning (DL). This work shows that a differentiable activation function is not necessary any more for error backpropagation. The derivative of the activation function can be replaced by an iterative temporal differencing (ITD) using fixed random feedback weight alignment (FBA). Using FBA with ITD, we can transform the VBP into a more biologically plausible approach for learning deep neural network architectures. We don't claim that ITD works completely the same as the spike-time dependent plasticity (STDP) in our brain but this work can be a step toward the integration of STDP-based error backpropagation in deep learning.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here