Jacobian Determinant of Normalizing Flows

12 Feb 2021 Huadong Liao JiaWei He

Normalizing flows learn a diffeomorphic mapping between the target and base distribution, while the Jacobian determinant of that mapping forms another real-valued function. In this paper, we show that the Jacobian determinant mapping is unique for the given distributions, hence the likelihood objective of flows has a unique global optimum... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

Normalizing Flows
Distribution Approximation
Dimensionality Reduction