Joint Optimization for Achieving Covertness in MIMO Over-the-Air Computation Networks

15 Mar 2024  ·  Junteng Yao, Tuo Wu, Ming Jin, Cunhua Pan, Quanzhong Li, Jinhong Yuan ·

This paper investigates covert data transmission within a multiple-input multiple-output (MIMO) over-the-air computation (AirComp) network, where sensors transmit data to the access point (AP) while guaranteeing covertness to the warden (Willie). Simultaneously, the AP introduces artificial noise (AN) to confuse Willie, meeting the covert requirement. We address the challenge of minimizing mean-square-error (MSE) of the AP, while considering transmit power constraints at both the AP and the sensors, as well as ensuring the covert transmission to Willie with a low detection error probability (DEP). However, obtaining globally optimal solutions for the investigated non-convex problem is challenging due to the interdependence of optimization variables. To tackle this problem, we introduce an exact penalty algorithm and transform the optimization problem into a difference-of-convex (DC) form problem to find a locally optimal solution. Simulation results showcase the superior performance in terms of our proposed scheme in comparison to the benchmark schemes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here