$k\texttt{-experts}$ -- Online Policies and Fundamental Limits

15 Oct 2021  ·  Samrat Mukhopadhyay, Sourav Sahoo, Abhishek Sinha ·

We introduce the $\texttt{$k$-experts}$ problem - a generalization of the classic Prediction with Expert's Advice framework. Unlike the classic version, where the learner selects exactly one expert from a pool of $N$ experts at each round, in this problem, the learner can select a subset of $k$ experts at each round $(1\leq k\leq N)$. The reward obtained by the learner at each round is assumed to be a function of the $k$ selected experts. The primary objective is to design an online learning policy with a small regret. In this pursuit, we propose $\texttt{SAGE}$ ($\textbf{Sa}$mpled Hed$\textbf{ge}$) - a framework for designing efficient online learning policies by leveraging statistical sampling techniques. For a wide class of reward functions, we show that $\texttt{SAGE}$ either achieves the first sublinear regret guarantee or improves upon the existing ones. Furthermore, going beyond the notion of regret, we fully characterize the mistake bounds achievable by online learning policies for stable loss functions. We conclude the paper by establishing a tight regret lower bound for a variant of the $\texttt{$k$-experts}$ problem and carrying out experiments with standard datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here