Kernel Mean Estimation and Stein's Effect

A mean function in reproducing kernel Hilbert space, or a kernel mean, is an important part of many applications ranging from kernel principal component analysis to Hilbert-space embedding of distributions. Given finite samples, an empirical average is the standard estimate for the true kernel mean. We show that this estimator can be improved via a well-known phenomenon in statistics called Stein's phenomenon. After consideration, our theoretical analysis reveals the existence of a wide class of estimators that are better than the standard. Focusing on a subset of this class, we propose efficient shrinkage estimators for the kernel mean. Empirical evaluations on several benchmark applications clearly demonstrate that the proposed estimators outperform the standard kernel mean estimator.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here