Kernel Packet: An Exact and Scalable Algorithm for Gaussian Process Regression with Matérn Correlations

7 Mar 2022  ·  HaoYuan Chen, Liang Ding, Rui Tuo ·

We develop an exact and scalable algorithm for one-dimensional Gaussian process regression with Mat\'ern correlations whose smoothness parameter $\nu$ is a half-integer. The proposed algorithm only requires $\mathcal{O}(\nu^3 n)$ operations and $\mathcal{O}(\nu n)$ storage. This leads to a linear-cost solver since $\nu$ is chosen to be fixed and usually very small in most applications. The proposed method can be applied to multi-dimensional problems if a full grid or a sparse grid design is used. The proposed method is based on a novel theory for Mat\'ern correlation functions. We find that a suitable rearrangement of these correlation functions can produce a compactly supported function, called a "kernel packet". Using a set of kernel packets as basis functions leads to a sparse representation of the covariance matrix that results in the proposed algorithm. Simulation studies show that the proposed algorithm, when applicable, is significantly superior to the existing alternatives in both the computational time and predictive accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods