Knitting a Markov blanket is hard when you are out-of-equilibrium: two examples in canonical nonequilibrium models
Bayesian theories of biological and brain function speculate that Markov blankets (a conditional independence separating a system from external states) play a key role for facilitating inference-like behaviour in living systems. Although it has been suggested that Markov blankets are commonplace in sparsely connected, nonequilibrium complex systems, this has not been studied in detail. Here, we show in two different examples (a pair of coupled Lorenz systems and a nonequilibrium Ising model) that sparse connectivity does not guarantee Markov blankets in the steady-state density of nonequilibrium systems. Conversely, in the nonequilibrium Ising model explored, the more distant from equilibrium the system appears to be correlated with the distance from displaying a Markov blanket. These result suggests that further assumptions might be needed in order to assume the presence of Markov blankets in the kind of nonequilibrium processes describing the activity of living systems.
PDF Abstract