Knowledge Accumulation in Continually Learned Representations and the Issue of Feature Forgetting

3 Apr 2023  ·  Timm Hess, Eli Verwimp, Gido M. van de Ven, Tinne Tuytelaars ·

While it is established that neural networks suffer from catastrophic forgetting ``at the output level'', it is debated whether this is also the case at the level of representations. Some studies ascribe a certain level of innate robustness to representations, that they only forget minimally and no critical information, while others claim that representations are also severely affected by forgetting. To settle this debate, we first discuss how this apparent disagreement might stem from the coexistence of two phenomena that affect the quality of continually learned representations: knowledge accumulation and feature forgetting. We then show that, even though it is true that feature forgetting can be small in absolute terms, newly learned information is forgotten just as catastrophically at the level of representations as it is at the output level. Next we show that this feature forgetting is problematic as it substantially slows down knowledge accumulation. We further show that representations that are continually learned through both supervised and self-supervised learning suffer from feature forgetting. Finally, we study how feature forgetting and knowledge accumulation are affected by different types of continual learning methods.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here