Knowledge-Enhanced Evidence Retrieval for Counterargument Generation

Finding counterevidence to statements is key to many tasks, including counterargument generation. We build a system that, given a statement, retrieves counterevidence from diverse sources on the Web... At the core of this system is a natural language inference (NLI) model that determines whether a candidate sentence is valid counterevidence or not. Most NLI models to date, however, lack proper reasoning abilities necessary to find counterevidence that involves complex inference. Thus, we present a knowledge-enhanced NLI model that aims to handle causality- and example-based inference by incorporating knowledge graphs. Our NLI model outperforms baselines for NLI tasks, especially for instances that require the targeted inference. In addition, this NLI model further improves the counterevidence retrieval system, notably finding complex counterevidence better. read more

PDF Abstract Findings (EMNLP) 2021 PDF Findings (EMNLP) 2021 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here