Knowledge-Guided Recurrent Neural Network Learning for Task-Oriented Action Prediction

15 Jul 2017  ·  Liang Lin, Lili Huang, Tianshui Chen, Yukang Gan, Hui Cheng ·

This paper aims at task-oriented action prediction, i.e., predicting a sequence of actions towards accomplishing a specific task under a certain scene, which is a new problem in computer vision research. The main challenges lie in how to model task-specific knowledge and integrate it in the learning procedure. In this work, we propose to train a recurrent long-short term memory (LSTM) network for handling this problem, i.e., taking a scene image (including pre-located objects) and the specified task as input and recurrently predicting action sequences. However, training such a network usually requires large amounts of annotated samples for covering the semantic space (e.g., diverse action decomposition and ordering). To alleviate this issue, we introduce a temporal And-Or graph (AOG) for task description, which hierarchically represents a task into atomic actions. With this AOG representation, we can produce many valid samples (i.e., action sequences according with common sense) by training another auxiliary LSTM network with a small set of annotated samples. And these generated samples (i.e., task-oriented action sequences) effectively facilitate training the model for task-oriented action prediction. In the experiments, we create a new dataset containing diverse daily tasks and extensively evaluate the effectiveness of our approach.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.