Kronecker Determinantal Point Processes

NeurIPS 2016  ·  Zelda Mariet, Suvrit Sra ·

Determinantal Point Processes (DPPs) are probabilistic models over all subsets a ground set of $N$ items. They have recently gained prominence in several applications that rely on "diverse" subsets. However, their applicability to large problems is still limited due to the $\mathcal O(N^3)$ complexity of core tasks such as sampling and learning. We enable efficient sampling and learning for DPPs by introducing KronDPP, a DPP model whose kernel matrix decomposes as a tensor product of multiple smaller kernel matrices. This decomposition immediately enables fast exact sampling. But contrary to what one may expect, leveraging the Kronecker product structure for speeding up DPP learning turns out to be more difficult. We overcome this challenge, and derive batch and stochastic optimization algorithms for efficiently learning the parameters of a KronDPP.

PDF Abstract NeurIPS 2016 PDF NeurIPS 2016 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here