Kullback-Leibler Principal Component for Tensors is not NP-hard

21 Nov 2017  ·  Kejun Huang, Nicholas D. Sidiropoulos ·

We study the problem of nonnegative rank-one approximation of a nonnegative tensor, and show that the globally optimal solution that minimizes the generalized Kullback-Leibler divergence can be efficiently obtained, i.e., it is not NP-hard. This result works for arbitrary nonnegative tensors with an arbitrary number of modes (including two, i.e., matrices). We derive a closed-form expression for the KL principal component, which is easy to compute and has an intuitive probabilistic interpretation. For generalized KL approximation with higher ranks, the problem is for the first time shown to be equivalent to multinomial latent variable modeling, and an iterative algorithm is derived that resembles the expectation-maximization algorithm. On the Iris dataset, we showcase how the derived results help us learn the model in an \emph{unsupervised} manner, and obtain strikingly close performance to that from supervised methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here