L2-Nonexpansive Neural Networks

ICLR 2019  ·  Haifeng Qian, Mark N. Wegman ·

This paper proposes a class of well-conditioned neural networks in which a unit amount of change in the inputs causes at most a unit amount of change in the outputs or any of the internal layers. We develop the known methodology of controlling Lipschitz constants to realize its full potential in maximizing robustness, with a new regularization scheme for linear layers, new ways to adapt nonlinearities and a new loss function... With MNIST and CIFAR-10 classifiers, we demonstrate a number of advantages. Without needing any adversarial training, the proposed classifiers exceed the state of the art in robustness against white-box L2-bounded adversarial attacks. They generalize better than ordinary networks from noisy data with partially random labels. Their outputs are quantitatively meaningful and indicate levels of confidence and generalization, among other desirable properties. read more

PDF Abstract ICLR 2019 PDF ICLR 2019 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here