Paper

LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning

This paper presents a new class of gradient methods for distributed machine learning that adaptively skip the gradient calculations to learn with reduced communication and computation. Simple rules are designed to detect slowly-varying gradients and, therefore, trigger the reuse of outdated gradients. The resultant gradient-based algorithms are termed Lazily Aggregated Gradient --- justifying our acronym LAG used henceforth. Theoretically, the merits of this contribution are: i) the convergence rate is the same as batch gradient descent in strongly-convex, convex, and nonconvex smooth cases; and, ii) if the distributed datasets are heterogeneous (quantified by certain measurable constants), the communication rounds needed to achieve a targeted accuracy are reduced thanks to the adaptive reuse of lagged gradients. Numerical experiments on both synthetic and real data corroborate a significant communication reduction compared to alternatives.

Results in Papers With Code
(↓ scroll down to see all results)