Landscape-Aware Fixed-Budget Performance Regression and Algorithm Selection for Modular CMA-ES Variants

17 Jun 2020  ·  Anja Jankovic, Carola Doerr ·

Automated algorithm selection promises to support the user in the decisive task of selecting a most suitable algorithm for a given problem. A common component of these machine-trained techniques are regression models which predict the performance of a given algorithm on a previously unseen problem instance. In the context of numerical black-box optimization, such regression models typically build on exploratory landscape analysis (ELA), which quantifies several characteristics of the problem. These measures can be used to train a supervised performance regression model. First steps towards ELA-based performance regression have been made in the context of a fixed-target setting. In many applications, however, the user needs to select an algorithm that performs best within a given budget of function evaluations. Adopting this fixed-budget setting, we demonstrate that it is possible to achieve high-quality performance predictions with off-the-shelf supervised learning approaches, by suitably combining two differently trained regression models. We test this approach on a very challenging problem: algorithm selection on a portfolio of very similar algorithms, which we choose from the family of modular CMA-ES algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here