Language Graph Distillation for Low-Resource Machine Translation

17 Aug 2019  ·  Tianyu He, Jiale Chen, Xu Tan, Tao Qin ·

Neural machine translation on low-resource language is challenging due to the lack of bilingual sentence pairs. Previous works usually solve the low-resource translation problem with knowledge transfer in a multilingual setting. In this paper, we propose the concept of Language Graph and further design a novel graph distillation algorithm that boosts the accuracy of low-resource translations in the graph with forward and backward knowledge distillation. Preliminary experiments on the TED talks multilingual dataset demonstrate the effectiveness of our proposed method. Specifically, we improve the low-resource translation pair by more than 3.13 points in terms of BLEU score.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here