Large-Scale Data-Driven Airline Market Influence Maximization

31 May 2021  ·  Duanshun Li, Jing Liu, Jinsung Jeon, Seoyoung Hong, Thai Le, Dongwon Lee, Noseong Park ·

We present a prediction-driven optimization framework to maximize the market influence in the US domestic air passenger transportation market by adjusting flight frequencies. At the lower level, our neural networks consider a wide variety of features, such as classical air carrier performance features and transportation network features, to predict the market influence. On top of the prediction models, we define a budget-constrained flight frequency optimization problem to maximize the market influence over 2,262 routes. This problem falls into the category of the non-linear optimization problem, which cannot be solved exactly by conventional methods. To this end, we present a novel adaptive gradient ascent (AGA) method. Our prediction models show two to eleven times better accuracy in terms of the median root-mean-square error (RMSE) over baselines. In addition, our AGA optimization method runs 690 times faster with a better optimization result (in one of our largest scale experiments) than a greedy algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here