Large Scale Empirical Risk Minimization via Truncated Adaptive Newton Method

22 May 2017 Mark Eisen Aryan Mokhtari Alejandro Ribeiro

We consider large scale empirical risk minimization (ERM) problems, where both the problem dimension and variable size is large. In these cases, most second order methods are infeasible due to the high cost in both computing the Hessian over all samples and computing its inverse in high dimensions... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet