Large-scale Image Geo-Localization Using Dominant Sets

4 Feb 2017  ·  Eyasu Zemene, Yonatan Tariku, Haroon Idrees, Andrea Prati, Marcello Pelillo, Mubarak Shah ·

This paper presents a new approach for the challenging problem of geo-locating an image using image matching in a structured database of city-wide reference images with known GPS coordinates. We cast the geo-localization as a clustering problem on local image features. Akin to existing approaches on the problem, our framework builds on low-level features which allow partial matching between images. For each local feature in the query image, we find its approximate nearest neighbors in the reference set. Next, we cluster the features from reference images using Dominant Set clustering, which affords several advantages over existing approaches. First, it permits variable number of nodes in the cluster which we use to dynamically select the number of nearest neighbors (typically coming from multiple reference images) for each query feature based on its discrimination value. Second, as we also quantify in our experiments, this approach is several orders of magnitude faster than existing approaches. Thus, we obtain multiple clusters (different local maximizers) and obtain a robust final solution to the problem using multiple weak solutions through constrained Dominant Set clustering on global image features, where we enforce the constraint that the query image must be included in the cluster. This second level of clustering also bypasses heuristic approaches to voting and selecting the reference image that matches to the query. We evaluated the proposed framework on an existing dataset of 102k street view images as well as a new dataset of 300k images, and show that it outperforms the state-of-the-art by 20% and 7%, respectively, on the two datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here