Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow

27 Feb 2018  ·  Steffen Wiewel, Moritz Becher, Nils Thuerey ·

We propose a method for the data-driven inference of temporal evolutions of physical functions with deep learning. More specifically, we target fluid flows, i.e. Navier-Stokes problems, and we propose a novel LSTM-based approach to predict the changes of pressure fields over time. The central challenge in this context is the high dimensionality of Eulerian space-time data sets. We demonstrate for the first time that dense 3D+time functions of physics system can be predicted within the latent spaces of neural networks, and we arrive at a neural-network based simulation algorithm with significant practical speed-ups. We highlight the capabilities of our method with a series of complex liquid simulations, and with a set of single-phase buoyancy simulations. With a set of trained networks, our method is more than two orders of magnitudes faster than a traditional pressure solver. Additionally, we present and discuss a series of detailed evaluations for the different components of our algorithm.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here