Lattice real-time simulations with learned optimal kernels

12 Oct 2023  ·  Daniel Alvestad, Alexander Rothkopf, Dénes Sexty ·

We present a simulation strategy for the real-time dynamics of quantum fields, inspired by reinforcement learning. It builds on the complex Langevin approach, which it amends with system specific prior information, a necessary prerequisite to overcome this exceptionally severe sign problem. The optimization process underlying our machine learning approach is made possible by deploying inherently stable solvers of the complex Langevin stochastic process and a novel optimality criterion derived from insight into so-called boundary terms. This conceptual and technical progress allows us to both significantly extend the range of real-time simulations in 1+1d scalar field theory beyond the state-of-the-art and to avoid discretization artifacts that plagued previous real-time field theory simulations. Limitations of and promising future directions are discussed.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here