LayerAct: Advanced activation mechanism utilizing layer-direction normalization for CNNs with BatchNorm

8 Jun 2023  ·  Kihyuk Yoon, Chiehyeon Lim ·

In this work, we propose a novel activation mechanism aimed at establishing layer-level activation (LayerAct) functions for CNNs with BatchNorm. These functions are designed to be more noise-robust compared to existing element-level activation functions by reducing the layer-level fluctuation of the activation outputs due to shift in inputs. Moreover, the LayerAct functions achieve this noise-robustness independent of the activation's saturation state, which limits the activation output space and complicates efficient training. We present an analysis and experiments demonstrating that LayerAct functions exhibit superior noise-robustness compared to element-level activation functions, and empirically show that these functions have a zero-like mean activation. Experimental results with three clean and three out-of-distribution benchmark datasets for image classification tasks show that LayerAct functions excel in handling noisy datasets, outperforming element-level activation functions, while the performance on clean datasets is also superior in most cases.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here