Learn to Enhance the Negative Information in Convolutional Neural Network

18 Jun 2023  ·  Zhicheng Cai, Chenglei Peng, Qiu Shen ·

This paper proposes a learnable nonlinear activation mechanism specifically for convolutional neural network (CNN) termed as LENI, which learns to enhance the negative information in CNNs. In sharp contrast to ReLU which cuts off the negative neurons and suffers from the issue of ''dying ReLU'', LENI enjoys the capacity to reconstruct the dead neurons and reduce the information loss. Compared to improved ReLUs, LENI introduces a learnable approach to process the negative phase information more properly. In this way, LENI can enhance the model representational capacity significantly while maintaining the original advantages of ReLU. As a generic activation mechanism, LENI possesses the property of portability and can be easily utilized in any CNN models through simply replacing the activation layers with LENI block. Extensive experiments validate that LENI can improve the performance of various baseline models on various benchmark datasets by a clear margin (up to 1.24% higher top-1 accuracy on ImageNet-1k) with negligible extra parameters. Further experiments show that LENI can act as a channel compensation mechanism, offering competitive or even better performance but with fewer learned parameters than baseline models. In addition, LENI introduces the asymmetry to the model structure which contributes to the enhancement of representational capacity. Through visualization experiments, we validate that LENI can retain more information and learn more representations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods