Learnable Graph Convolutional Network and Feature Fusion for Multi-view Learning

16 Nov 2022  ·  Zhaoliang Chen, Lele Fu, Jie Yao, Wenzhong Guo, Claudia Plant, Shiping Wang ·

In practical applications, multi-view data depicting objectives from assorted perspectives can facilitate the accuracy increase of learning algorithms. However, given multi-view data, there is limited work for learning discriminative node relationships and graph information simultaneously via graph convolutional network that has drawn the attention from considerable researchers in recent years. Most of existing methods only consider the weighted sum of adjacency matrices, yet a joint neural network of both feature and graph fusion is still under-explored. To cope with these issues, this paper proposes a joint deep learning framework called Learnable Graph Convolutional Network and Feature Fusion (LGCN-FF), consisting of two stages: feature fusion network and learnable graph convolutional network. The former aims to learn an underlying feature representation from heterogeneous views, while the latter explores a more discriminative graph fusion via learnable weights and a parametric activation function dubbed Differentiable Shrinkage Activation (DSA) function. The proposed LGCN-FF is validated to be superior to various state-of-the-art methods in multi-view semi-supervised classification.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here