Learned imaging with constraints and uncertainty quantification

We outline new approaches to incorporate ideas from deep learning into wave-based least-squares imaging. The aim, and main contribution of this work, is the combination of handcrafted constraints with deep convolutional neural networks, as a way to harness their remarkable ease of generating natural images. The mathematical basis underlying our method is the expectation-maximization framework, where data are divided in batches and coupled to additional "latent" unknowns. These unknowns are pairs of elements from the original unknown space (but now coupled to a specific data batch) and network inputs. In this setting, the neural network controls the similarity between these additional parameters, acting as a "center" variable. The resulting problem amounts to a maximum-likelihood estimation of the network parameters when the augmented data model is marginalized over the latent variables.

PDF Abstract NeurIPS Workshop 2019 PDF NeurIPS Workshop 2019 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here