Learning Ability of Interpolating Deep Convolutional Neural Networks

25 Oct 2022  ·  Tian-Yi Zhou, Xiaoming Huo ·

It is frequently observed that overparameterized neural networks generalize well. Regarding such phenomena, existing theoretical work mainly devotes to linear settings or fully-connected neural networks. This paper studies the learning ability of an important family of deep neural networks, deep convolutional neural networks (DCNNs), under both underparameterized and overparameterized settings. We establish the first learning rates of underparameterized DCNNs without parameter or function variable structure restrictions presented in the literature. We also show that by adding well-defined layers to a non-interpolating DCNN, we can obtain some interpolating DCNNs that maintain the good learning rates of the non-interpolating DCNN. This result is achieved by a novel network deepening scheme designed for DCNNs. Our work provides theoretical verification of how overfitted DCNNs generalize well.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods