Learning and Knowledge Transfer with Memory Networks for Machine Comprehension

EACL 2017  ·  Mohit Yadav, Lovekesh Vig, Gautam Shroff ·

Enabling machines to read and comprehend unstructured text remains an unfulfilled goal for NLP research. Recent research efforts on the {``}machine comprehension{''} task have managed to achieve close to ideal performance on simulated data. However, achieving similar levels of performance on small real world datasets has proved difficult; major challenges stem from the large vocabulary size, complex grammar, and, the frequent ambiguities in linguistic structure. On the other hand, the requirement of human generated annotations for training, in order to ensure a sufficiently diverse set of questions is prohibitively expensive. Motivated by these practical issues, we propose a novel curriculum inspired training procedure for Memory Networks to improve the performance for machine comprehension with relatively small volumes of training data. Additionally, we explore various training regimes for Memory Networks to allow knowledge transfer from a closely related domain having larger volumes of labelled data. We also suggest the use of a loss function to incorporate the asymmetric nature of knowledge transfer. Our experiments demonstrate improvements on Dailymail, CNN, and MCTest datasets.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here