Learning Anytime Predictions in Neural Networks via Adaptive Loss Balancing

22 Aug 2017Hanzhang HuDebadeepta DeyMartial HebertJ. Andrew Bagnell

This work considers the trade-off between accuracy and test-time computational cost of deep neural networks (DNNs) via \emph{anytime} predictions from auxiliary predictions. Specifically, we optimize auxiliary losses jointly in an \emph{adaptive} weighted sum, where the weights are inversely proportional to average of each loss... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.