Learning-Augmented Decentralized Online Convex Optimization in Networks

16 Jun 2023  ·  Pengfei Li, Jianyi Yang, Adam Wierman, Shaolei Ren ·

This paper studies decentralized online convex optimization in a networked multi-agent system and proposes a novel algorithm, Learning-Augmented Decentralized Online optimization (LADO), for individual agents to select actions only based on local online information. LADO leverages a baseline policy to safeguard online actions for worst-case robustness guarantees, while staying close to the machine learning (ML) policy for average performance improvement. In stark contrast with the existing learning-augmented online algorithms that focus on centralized settings, LADO achieves strong robustness guarantees in a decentralized setting. We also prove the average cost bound for LADO, revealing the tradeoff between average performance and worst-case robustness and demonstrating the advantage of training the ML policy by explicitly considering the robustness requirement.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods