Learning-Based Real-Time Event Identification Using Rich Real PMU Data

17 Jun 2020  ·  Yuxuan Yuan, Yifei Guo, Kaveh Dehghanpour, Zhaoyu Wang, Yanchao Wang ·

A large-scale deployment of phasor measurement units (PMUs) that reveal the inherent physical laws of power systems from a data perspective enables an enhanced awareness of power system operation. However, the high-granularity and non-stationary nature of PMU time series and imperfect data quality could bring great technical challenges to real-time system event identification. To address these issues, this paper proposes a two-stage learning-based framework. At the first stage, a Markov transition field (MTF) algorithm is exploited to extract the latent data features by encoding temporal dependency and transition statistics of PMU data in graphs. Then, a spatial pyramid pooling (SPP)-aided convolutional neural network (CNN) is established to efficiently and accurately identify operation events. The proposed method fully builds on and is also tested on a large real dataset from several tens of PMU sources (and the corresponding event logs), located across the U.S., with a time span of two consecutive years. The numerical results validate that our method has high identification accuracy while showing good robustness against poor data quality.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods