Learning Bounds for Risk-sensitive Learning

NeurIPS 2020  ·  Jaeho Lee, Sejun Park, Jinwoo Shin ·

In risk-sensitive learning, one aims to find a hypothesis that minimizes a risk-averse (or risk-seeking) measure of loss, instead of the standard expected loss. In this paper, we propose to study the generalization properties of risk-sensitive learning schemes whose optimand is described via optimized certainty equivalents (OCE): our general scheme can handle various known risks, e.g., the entropic risk, mean-variance, and conditional value-at-risk, as special cases. We provide two learning bounds on the performance of empirical OCE minimizer. The first result gives an OCE guarantee based on the Rademacher average of the hypothesis space, which generalizes and improves existing results on the expected loss and the conditional value-at-risk. The second result, based on a novel variance-based characterization of OCE, gives an expected loss guarantee with a suppressed dependence on the smoothness of the selected OCE. Finally, we demonstrate the practical implications of the proposed bounds via exploratory experiments on neural networks.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here