Learning by Semantic Similarity Makes Abstractive Summarization Better

18 Feb 2020  ·  Wonjin Yoon, Yoon Sun Yeo, Minbyul Jeong, Bong-Jun Yi, Jaewoo Kang ·

By harnessing pre-trained language models, summarization models had rapid progress recently. However, the models are mainly assessed by automatic evaluation metrics such as ROUGE. Although ROUGE is known for having a positive correlation with human evaluation scores, it has been criticized for its vulnerability and the gap between actual qualities. In this paper, we compare the generated summaries from recent LM, BART, and the reference summaries from a benchmark dataset, CNN/DM, using a crowd-sourced human evaluation metric. Interestingly, model-generated summaries receive higher scores relative to reference summaries. Stemming from our experimental results, we first argue the intrinsic characteristics of the CNN/DM dataset, the progress of pre-trained language models, and their ability to generalize on the training data. Finally, we share our insights into the model-generated summaries and presents our thought on learning methods for abstractive summarization.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here