Learning Deep $\ell_0$ Encoders

1 Sep 2015  ·  Zhangyang Wang, Qing Ling, Thomas S. Huang ·

Despite its nonconvex nature, $\ell_0$ sparse approximation is desirable in many theoretical and application cases. We study the $\ell_0$ sparse approximation problem with the tool of deep learning, by proposing Deep $\ell_0$ Encoders. Two typical forms, the $\ell_0$ regularized problem and the $M$-sparse problem, are investigated. Based on solid iterative algorithms, we model them as feed-forward neural networks, through introducing novel neurons and pooling functions. Enforcing such structural priors acts as an effective network regularization. The deep encoders also enjoy faster inference, larger learning capacity, and better scalability compared to conventional sparse coding solutions. Furthermore, under task-driven losses, the models can be conveniently optimized from end to end. Numerical results demonstrate the impressive performances of the proposed encoders.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here