Learning directed acyclic graphs based on sparsest permutations

1 Jul 2013  ·  Garvesh Raskutti, Caroline Uhler ·

We consider the problem of learning a Bayesian network or directed acyclic graph (DAG) model from observational data. A number of constraint-based, score-based and hybrid algorithms have been developed for this purpose. For constraint-based methods, statistical consistency guarantees typically rely on the faithfulness assumption, which has been show to be restrictive especially for graphs with cycles in the skeleton. However, there is only limited work on consistency guarantees for score-based and hybrid algorithms and it has been unclear whether consistency guarantees can be proven under weaker conditions than the faithfulness assumption. In this paper, we propose the sparsest permutation (SP) algorithm. This algorithm is based on finding the causal ordering of the variables that yields the sparsest DAG. We prove that this new score-based method is consistent under strictly weaker conditions than the faithfulness assumption. We also demonstrate through simulations on small DAGs that the SP algorithm compares favorably to the constraint-based PC and SGS algorithms as well as the score-based Greedy Equivalence Search and hybrid Max-Min Hill-Climbing method. In the Gaussian setting, we prove that our algorithm boils down to finding the permutation of the variables with sparsest Cholesky decomposition for the inverse covariance matrix. Using this connection, we show that in the oracle setting, where the true covariance matrix is known, the SP algorithm is in fact equivalent to $\ell_0$-penalized maximum likelihood estimation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here