Learning Discriminative Multilevel Structured Dictionaries for Supervised Image Classification

28 Feb 2018  ·  Jeremy Aghaei Mazaheri, Elif Vural, Claude Labit, Christine Guillemot ·

Sparse representations using overcomplete dictionaries have proved to be a powerful tool in many signal processing applications such as denoising, super-resolution, inpainting, compression or classification. The sparsity of the representation very much depends on how well the dictionary is adapted to the data at hand. In this paper, we propose a method for learning structured multilevel dictionaries with discriminative constraints to make them well suited for the supervised pixelwise classification of images. A multilevel tree-structured discriminative dictionary is learnt for each class, with a learning objective concerning the reconstruction errors of the image patches around the pixels over each class-representative dictionary. After the initial assignment of the class labels to image pixels based on their sparse representations over the learnt dictionaries, the final classification is achieved by smoothing the label image with a graph cut method and an erosion method. Applied to a common set of texture images, our supervised classification method shows competitive results with the state of the art.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here