Learning Distributional Programs for Relational Autocompletion

23 Jan 2020  ·  Kumar Nitesh, Kuzelka Ondrej, De Raedt Luc ·

Relational autocompletion is the problem of automatically filling out some missing values in multi-relational data. We tackle this problem within the probabilistic logic programming framework of Distributional Clauses (DC), which supports both discrete and continuous probability distributions... Within this framework, we introduce DiceML { an approach to learn both the structure and the parameters of DC programs from relational data (with possibly missing data). To realize this, DiceML integrates statistical modeling and distributional clauses with rule learning. The distinguishing features of DiceML are that it 1) tackles autocompletion in relational data, 2) learns distributional clauses extended with statistical models, 3) deals with both discrete and continuous distributions, 4) can exploit background knowledge, and 5) uses an expectation-maximization based algorithm to cope with missing data. The empirical results show the promise of the approach, even when there is missing data. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here