Learning from demonstration with model-based Gaussian process

11 Oct 2019Noémie JaquierDavid GinsbourgerSylvain Calinon

In learning from demonstrations, it is often desirable to adapt the behavior of the robot as a function of the variability retrieved from human demonstrations and the (un)certainty encoded in different parts of the task. In this paper, we propose a novel multi-output Gaussian process (MOGP) based on Gaussian mixture regression (GMR)... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper