Learning from Multiview Correlations in Open-Domain Videos

21 Nov 2018  ·  Nils Holzenberger, Shruti Palaskar, Pranava Madhyastha, Florian Metze, Raman Arora ·

An increasing number of datasets contain multiple views, such as video, sound and automatic captions. A basic challenge in representation learning is how to leverage multiple views to learn better representations... This is further complicated by the existence of a latent alignment between views, such as between speech and its transcription, and by the multitude of choices for the learning objective. We explore an advanced, correlation-based representation learning method on a 4-way parallel, multimodal dataset, and assess the quality of the learned representations on retrieval-based tasks. We show that the proposed approach produces rich representations that capture most of the information shared across views. Our best models for speech and textual modalities achieve retrieval rates from 70.7% to 96.9% on open-domain, user-generated instructional videos. This shows it is possible to learn reliable representations across disparate, unaligned and noisy modalities, and encourages using the proposed approach on larger datasets. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here