Learning from weakly dependent data under Dobrushin's condition

21 Jun 2019  ·  Yuval Dagan, Constantinos Daskalakis, Nishanth Dikkala, Siddhartha Jayanti ·

Statistical learning theory has largely focused on learning and generalization given independent and identically distributed (i.i.d.) samples. Motivated by applications involving time-series data, there has been a growing literature on learning and generalization in settings where data is sampled from an ergodic process. This work has also developed complexity measures, which appropriately extend the notion of Rademacher complexity to bound the generalization error and learning rates of hypothesis classes in this setting. Rather than time-series data, our work is motivated by settings where data is sampled on a network or a spatial domain, and thus do not fit well within the framework of prior work. We provide learning and generalization bounds for data that are complexly dependent, yet their distribution satisfies the standard Dobrushin's condition. Indeed, we show that the standard complexity measures of Gaussian and Rademacher complexities and VC dimension are sufficient measures of complexity for the purposes of bounding the generalization error and learning rates of hypothesis classes in our setting. Moreover, our generalization bounds only degrade by constant factors compared to their i.i.d. analogs, and our learnability bounds degrade by log factors in the size of the training set.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here