Learning Generative Models with the Up Propagation Algorithm

NeurIPS 1997  ·  Jong-Hoon Oh, H. Sebastian Seung ·

Up-propagation is an algorithm for inverting and learning neural network generative models Sensory input is processed by inverting a model that generates patterns from hidden variables using topdown connections The inversion process is iterative utilizing a negative feedback loop that depends on an error signal propagated by bottomup connections The error signal is also used to learn the generative model from examples The algorithm is benchmarked against principal component analysis in experiments on images of handwritten digits.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here