Learning Gradual Argumentation Frameworks using Genetic Algorithms

25 Jun 2021  ·  Jonathan Spieler, Nico Potyka, Steffen Staab ·

Gradual argumentation frameworks represent arguments and their relationships in a weighted graph. Their graphical structure and intuitive semantics makes them a potentially interesting tool for interpretable machine learning. It has been noted recently that their mechanics are closely related to neural networks, which allows learning their weights from data by standard deep learning frameworks. As a first proof of concept, we propose a genetic algorithm to simultaneously learn the structure of argumentative classification models. To obtain a well interpretable model, the fitness function balances sparseness and accuracy of the classifier. We discuss our algorithm and present first experimental results on standard benchmarks from the UCI machine learning repository. Our prototype learns argumentative classification models that are comparable to decision trees in terms of learning performance and interpretability.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here