Learning Hawkes Processes from Short Doubly-Censored Event Sequences

ICML 2017  ·  Hongteng Xu, Dixin Luo, Hongyuan Zha ·

Many real-world applications require robust algorithms to learn point processes based on a type of incomplete data --- the so-called short doubly-censored (SDC) event sequences. We study this critical problem of quantitative asynchronous event sequence analysis under the framework of Hawkes processes by leveraging the idea of data synthesis... Given SDC event sequences observed in a variety of time intervals, we propose a sampling-stitching data synthesis method --- sampling predecessors and successors for each SDC event sequence from potential candidates and stitching them together to synthesize long training sequences. The rationality and the feasibility of our method are discussed in terms of arguments based on likelihood. Experiments on both synthetic and real-world data demonstrate that the proposed data synthesis method improves learning results indeed for both time-invariant and time-varying Hawkes processes. read more

PDF Abstract ICML 2017 PDF ICML 2017 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here