Learning Interpretable and Discrete Representations with Adversarial Training for Unsupervised Text Classification

28 Apr 2020  ·  Yau-Shian Wang, Hung-Yi Lee, Yun-Nung Chen ·

Learning continuous representations from unlabeled textual data has been increasingly studied for benefiting semi-supervised learning. Although it is relatively easier to interpret discrete representations, due to the difficulty of training, learning discrete representations for unlabeled textual data has not been widely explored. This work proposes TIGAN that learns to encode texts into two disentangled representations, including a discrete code and a continuous noise, where the discrete code represents interpretable topics, and the noise controls the variance within the topics. The discrete code learned by TIGAN can be used for unsupervised text classification. Compared to other unsupervised baselines, the proposed TIGAN achieves superior performance on six different corpora. Also, the performance is on par with a recently proposed weakly-supervised text classification method. The extracted topical words for representing latent topics show that TIGAN learns coherent and highly interpretable topics.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here