Learning Kernels with Radiuses of Minimum Enclosing Balls

In this paper, we point out that there exist scaling and initialization problems in most existing multiple kernel learning (MKL) approaches, which employ the large margin principle to jointly learn both a kernel and an SVM classifier. The reason is that the margin itself can not well describe how good a kernel is due to the negligence of the scaling... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper