Learning low-precision neural networks without Straight-Through Estimator(STE)

4 Mar 2019Zhi-Gang LiuMatthew Mattina

The Straight-Through Estimator (STE) is widely used for back-propagating gradients through the quantization function, but the STE technique lacks a complete theoretical understanding. We propose an alternative methodology called alpha-blending (AB), which quantizes neural networks to low-precision using stochastic gradient descent (SGD)... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.