Learning Mixtures of Arbitrary Distributions over Large Discrete Domains

7 Dec 2012  ·  Yuval Rabani, Leonard Schulman, Chaitanya Swamy ·

We give an algorithm for learning a mixture of {\em unstructured} distributions. This problem arises in various unsupervised learning scenarios, for example in learning {\em topic models} from a corpus of documents spanning several topics. We show how to learn the constituents of a mixture of $k$ arbitrary distributions over a large discrete domain $[n]=\{1,2,\dots,n\}$ and the mixture weights, using $O(n\polylog n)$ samples. (In the topic-model learning setting, the mixture constituents correspond to the topic distributions.) This task is information-theoretically impossible for $k>1$ under the usual sampling process from a mixture distribution. However, there are situations (such as the above-mentioned topic model case) in which each sample point consists of several observations from the same mixture constituent. This number of observations, which we call the {\em "sampling aperture"}, is a crucial parameter of the problem. We obtain the {\em first} bounds for this mixture-learning problem {\em without imposing any assumptions on the mixture constituents.} We show that efficient learning is possible exactly at the information-theoretically least-possible aperture of $2k-1$. Thus, we achieve near-optimal dependence on $n$ and optimal aperture. While the sample-size required by our algorithm depends exponentially on $k$, we prove that such a dependence is {\em unavoidable} when one considers general mixtures. A sequence of tools contribute to the algorithm, such as concentration results for random matrices, dimension reduction, moment estimations, and sensitivity analysis.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here